Detecting IoT Botnet in 5G Core Network Using Machine Learning
نویسندگان
چکیده
As Internet of Things (IoT) devices with security issues are connected to 5G mobile networks, the importance IoT Botnet detection research in network environments is increasing. However, existing focused on AI-based wired environments. In addition, related ML-based have been conducted up 4G. Therefore, this paper conducts a study traffic core network. The binary and multiclass classification was performed compare simple normal/malicious normal/three-type malware detection. both methods, performance using only 5GC’s GTP-U packets decreased by at least 22.99% accuracy compared environment. conducting feature experiment, for considering 5GC characteristics confirmed. Since analyzed botnet passing through ML presented results, think it will be meaningful as reference link
منابع مشابه
Towards Developing Network forensic mechanism for Botnet Activities in the IoT based on Machine Learning Techniques
The IoT is a network of interconnected everyday objects called “things” that have been augmented with a small measure of computing capabilities. Lately, the IoT has been affected by a variety of different botnet activities. As botnets have been the cause of serious security risks and financial damage over the years, existing Network forensic techniques cannot identify and track current sophisti...
متن کاملPolicy Model for Sharing Network Slices in 5G Core Network
As mobile data traffic increases, and the number of services provided by the mobile network increases, service load flows as well, which requires changing in the principles, models, and strategies for media transmission streams serving to guarantee the given nature of giving a wide scope of services in Flexible and cost-effective. Right now, the fundamental question remains what number of netwo...
متن کاملUsing Machine Learning to Detect Noisy Neighbors in 5G Networks
5G networks are expected to be more dynamic and chaotic in their structure than current networks. With the advent of Network Function Virtualization (NFV), Network Functions (NF) will no longer be tightly coupled with the hardware they are running on, which poses new challenges in network management. Noisy neighbor is a term commonly used to describe situations in NFV infrastructure where an ap...
متن کاملUsing Machine Learning Techniques to Identify Botnet Traffic
To date, techniques to counter cyber-attacks have predominantly been reactive; they focus on monitoring network traffic, detecting anomalies and cyber-attack traffic patterns, and, a posteriori, combating the cyber-attacks and mitigating their effects. Contrary to such approaches, we advocate proactively detecting and identifying botnets prior to their being used as part of a cyber-attack [12]....
متن کاملMachine Learning Approach for Botnet Detection
BotNet is a type of malware that has posed serious threats to Internet community and has been a common weapon for committing cybercrimes such as spam generation, stealing sensitive information, click fraud and DDOS attacks. In this document, we propose an approach for BotNet detection at large scale where network traffic is monitored at a central core in the Internet (say a Tier-1 ISP) so that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers, materials & continua
سال: 2022
ISSN: ['1546-2218', '1546-2226']
DOI: https://doi.org/10.32604/cmc.2022.026581